Homogeneous Koszul manifolds in ${\bf C}\sp n$

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symplectic reflection algebras and non-homogeneous N-Koszul property

From symplectic reflection algebras [12], some algebras are naturally introduced. We show that these algebras are non-homogeneous N Koszul algebras. The Koszul property was generalized to homogeneous algebras of degree N > 2 in [6]. In the present paper, the extension of the Koszul property to non-homogeneous algebras is realized through a PBW theorem. This PBW theorem is the generalization to ...

متن کامل

Koszul and Gorenstein properties for homogeneous algebras

Koszul property was generalized to homogeneous algebras of degree N > 2 in [5], and related to N -complexes in [7]. We show that if the N -homogeneous algebra A is generalized Koszul, AS-Gorenstein and of finite global dimension, then one can apply the Van den Bergh duality theorem [23] to A, i.e., there is a Poincaré duality between Hochschild homology and cohomology of A, as for N = 2. Mathem...

متن کامل

Homogeneous and Inhomogeneous Manifolds

All metaLindelöf, and most countably paracompact, homogeneous manifolds are Hausdorff. Metacompact manifolds are never rigid. Every countable group can be realized as the group of autohomeomorphisms of a Lindelöf manifold. There is a rigid foliation of the plane.

متن کامل

Locally Homogeneous Geometric Manifolds

Motivated by Felix Klein’s notion that geometry is governed by its group of symmetry transformations, Charles Ehresmann initiated the study of geometric structures on topological spaces locally modeled on a homogeneous space of a Lie group. These locally homogeneous spaces later formed the context of Thurston’s 3-dimensional geometrization program. The basic problem is for a given topology Σ an...

متن کامل

Complete 3d-Homogeneous Manifolds

Assume that M is close three dimensional manifold. We prove that M \ {p} is a complete homogeneous manifold. As a corollary, we give a new proof on the classical Poincaré’s conjecture. Homogénéité variété de dimension trois Résumé. Soit M est une variété de dimension 3, conexe, fermée. Alors, M \{p} est complet Homogénéité variété. Nous présentons une neuve preuve du la Conjecture sur une varié...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Geometry

سال: 1992

ISSN: 0022-040X

DOI: 10.4310/jdg/1214453182